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ABSTRACT: The nature of the putative Cr−Cr quintuple bond in Ar′CrCrAr′ (Ar′ =
C6H3-2,6(C6H3-2,6-Pr

i
2)2) is investigated with the help of a newly developed energy and

density decomposition scheme. The new approach combines the extended transition state
(ETS) energy decomposition method with the natural orbitals for chemical valence
(NOCV) density decomposition scheme within the same theoretical framework. The
results show that in addition to the five bonding components (σ2π2π′2δ2δ′2) of the Cr−Cr
bond, the quintuple bond is augmented by secondary Cr−C interactions involving the Cr-
ipso-carbon of the flanking aryl rings. The presence of isopropyl groups (Pri) is further
shown to stabilize Ar′CrCrAr′ by 20 kcal/mol compared to the two Ar′Cr monomers
through stabilizing van der Waals dispersion interactions.

I. INTRODUCTION
The recently1 synthesized dichromium complex Ar′CrCrAr′
(Ar′ = C6H3-2,6(C6H3-2,6-Pr

i
2)2) with a C2h geometry has

stimulated several2−8 theoretical and experimental studies in
which the nature of the Cr−Cr bond was probed. It has been
asserted that the unusually short Cr−Cr distance (1.835 Å) is
indicative of a quintuple bond (σ2π4δ4). The complex has in
addition a Cr−Cr−C angle of 101° which allows for a
secondary Cr−C interaction between one chromium center
and an ipso-carbon of one of the flanking aryl rings attached to
the other chromium center. This interaction has been alleged
further to stabilize the Cr−Cr link. The fact that RCrCrR
complexes only have been isolated with bulky R groups also
indicates that ligands such as Ar′ serve to provide steric
protection. However, it has moreover been suggested that the
electron donating isopropyl substituents (Pri) on the aryl rings
might help stabilize the metal bond electronically. After the
initial work by Power1 et al., several complexes with ultrashort
Cr−Cr bonds have been reported.3−5 The shortest Cr−Cr
distance (1.7293 Å) to date has been observed by Kempe6 et al.
It is the objective of the present study to probe the strength

and multiplicity of the Cr−Cr bond in Ar′CrCrAr′ as well as the
ipso-carbon−chromium interaction by the help of the extended
transition state (ETS) energy decomposition scheme9 and the
natural orbitals for chemical valence (NOCV) density
decomposition approach.10−14 These techniques have recently
been combined into the ETS-NOCV method.11 We shall
further assess whether Ar′ is able electronically to stabilize the
Cr−Cr bond either by electron donation from the isopropyl
substituents (Pri) on the aryl rings or through dispersive van
der Waals attractions between the two Ar′ ligands.

II. COMPUTATIONAL METHODS AND DETAILS
We provide here a brief account of the ETS-NOCV method.

Extended Transition State Method (ETS). The ETS scheme
considers the formation of a molecule AB with the corresponding
ground state Kohn−Sham wave function ΨAB and energy EAB to be
formed from two (or more) non-interacting fragments A0 and B0 with
energies EA

0 and EB
0, respectively. In the first instance, the two

interacting fragments are distorted at infinite separation from their
equilibrium geometries to the structures A and B they will have in the
combined molecule AB. The energy that is required for this distortion
is given as

Δ = − + −E E E E Eprep A A
0

B B
0

(1)

where EA and EB are the energies of the distorted fragments A and B,
respectively. The ETS scheme decomposes the difference ΔEint

between the energy of the combined molecule EAB and the energies
of the distorted fragments EA and EB into various chemically
meaningful components as

Δ = Δ + Δ + Δ + ΔE E E E Eint elst Pauli disp orb (2)

Here ΔEelst is the electrostatic interaction9 between the two distorted
fragments as they are brought from infinite separation to their final
positions in the combined molecule without any change in density.
This term is stabilizing for neutral fragments. Further, ΔEPauli

represents the destabilizing9 interaction between the occupied orbitals
on A and B, respectively. This destabilization is also referred to as the
Pauli repulsion.9 It is customary9,16 to combine ΔEelst and ΔEPauli into
the steric interaction energy ΔEsteric = ΔEelst + ΔEPauli. Further, ΔEdisp
is the stabilizing van der Waals dispersion interactions17 between the
two fragments A and B in AB. Allowing finally the virtual orbitals on A
and B to participate in the bonding leads to the orbital stabilization
term ΔEorbof eq 2. Participation of the virtual orbitals gives rise to the
change in density9
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∑ ∑ ψ ψΔρ = Δ
λ μ

λ μμλP (1) (1)
(3)

Here the summation over (μ,λ) involves both occupied and virtual
orbitals (ψμ,ψλ) of the two deformed fragments and ΔPμλ is the density
matrix that spans Δρ in the orbital space (ψμ,ψλ). In fact the set
(ψμ,ψλ) used in eq 3 consists of orthogonalized fragment orbitals11

constructed from the original nonorthogonal set11 (ψ′μ,ψ′λ) by
Schmidt orthogonalizing virtual orbitals on occupied orbitals11 and
each other. Further, the occupied orbitals are Lowdin orthogonal-
ized.11 The two sets (ψμ,ψλ) or (ψ′μ,ψ′λ) are equivalent in that both can
be used to represent ΔEorb or Δρ. However, (ψμ,ψλ) has some
desirable properties that we shall mention shortly.
The density change Δρ is often referred to as the bond deformation

density and ΔPμλ is named the bond deformation density matrix. We
can write9,12,13 the deformation energy as

∑ ∑Δ = Δ
λ μ

λμ λμE P Forb
TS

(4)

Here Fλμ
TS is a Kohn−Sham Fock matrix element that is defined in

terms of a transition state potential at the midpoint between the
combined fragments and the final molecule, hence the word extended
transition state (ETS) method.9,11,12 For symmetrical molecules ΔEorb
can be split into contributions from the different irreducible
representations12,13 Γi of the molecule point group Γi as

∑Δ = Δ ΓE E
i

orb

rep
i

(5)

In favorable cases different interactions such as σ,π,δ-bonding or σ-
donation and π-back-donation can be attributed to different
representations and thus assessed individually.12,13 Unfortunately, for
many molecules with low or no symmetry such a separation is not
possible with ETS.
Natural Orbitals for Chemical Valence (NOCV). In the NOCV

approach10 ΔP is diagonalized. Thus

Δ = =+C PC v i M; 1,i i i (6)

where M denotes the total number of fragment orbitals and Ci is a
column vector containing the eigenvectors to ΔP. We next introduce
the NOCVs as

∑φ ψ=
λ

λ λC(1) (1)i

M

i
(7)

It is obvious from eqs 6 and 7 that we can write Δρ as

∑ φ φΔρ = v (1) (1)
i

N

i i i
(8)

In the particular case where we are using orthogonalized fragment
orbitals in eq 7 we get11 pairs of eigenvalues (vi,vj) that are equal in
absolute terms but of opposite signs. We can thus in that case write

∑ ∑φ φ ρΔρ = − + = Δ
=

−
=

v(1) [ (1) (1)] (1)
k

M

k k k
k

M

k
1

/2
2 2

1

/2

(9)

where the deformation density Δρ is expressed in the NOCV
representation as a sum of pairs of complementary eigenfunctions
(ϕk,ϕ−k) corresponding to the eigenvalues vk and v−k with the same
absolute value but opposite signs. Historically the use of NOCVs goes
back to the Nalewajski−Mrozek valence theory.14,15

ETS-NOCV Scheme. Expressing ΔEorb of eq 4 in terms of the
NOCVs leads to the simple expression

∑Δ = − +
=

− −E v F F[ ]
k

M

k k k k korb
1

/2

,
TS

,
TS

(10)

where F−k,−k
TS and Fk,k

TS are diagonal Kohn−Sham matrix elements
defined over NOCVs with respect to the transition state (TS)

intermediate between the density of the final molecule AB and the
superimposed fragment densities of A and B.9 In deriving eq 10 use
has been made of the fact that the coefficients Ci that define the
NOCVs are eigenvectors to ΔP. The advantage of the expression in eq
10 for ΔEorb over that of eq 4 is that only a few complementary NOCV
pairs normally contribute significantly to ΔEorb. It can further be seen
from eqs 9 and 10 that, for each complementary NOCV pair
representing one of the charge deformations Δρk we have as well the
corresponding bond energy contribution ΔEkorb.11 Also, the individual
contributions Δρk can usually be interpreted in terms of interactions
such as σ,π,δ-bonding or σ-donation and π-back-donation even when
the molecule AB lacks symmetry.

Computational Details. All DFT calculations presented here
were based on the Amsterdam density functional program version
2010.01 in which the ETS-NOCV was implemented.18 Use was made
of the Becke−Perdew exchange-correlation functional (BP86)19,20 and
a standard triple-ζ STO basis with one set of polarization functions for
all atoms. Relativistic effects for Cr atom were included at the scalar
relativistic ZORA level of approximations as implemented in the ADF
program.18 The fragment and molecular orbitals, as well as contours of
deformation densities were plotted using the ADF-GUI interface.18

The calculations on Ar′CrCrAr′ (Ar′ = C6H3-2,6(C6H3-2,6-Pr
i
2)2) were

based on the published1 crystal structure. The positions of the
hydrogen atoms were optimized while keeping all other atoms at
frozen positions. The Cartesian coordinates for Ar′ = C6H3-2,6(C6H3-
2,6-Pri2)2 and the model system Ar* = C6H3-2,6(C6H5)2 are given in
the Supporting Information, Tables S1 and S2, respectively. The
dispersion term ΔEdisp of eq 2 was taken from the dispersion corrected
DFT scheme by Grimme et al.17 as implemented in ADF.

III. RESULTS AND DISCUSSION
Electronic Structure of Ar*CrCrAr*. The molecular

orbitals of Ar′CrCrAr′ (Ar′ = C6H3-2,6(C6H3-2,6-Pr
i
2)2) (1)

and the model system Ar*CrCrAr* (Ar* = C6H3-2,6(C6H5)2)
(2) where the Pri groups have been replaced by hydrogens are
well-known and firmly established by previous studies.1−8

Nevertheless, we present for the sake of completeness the five
metal−metal bonding orbitals along with the constituent
fragment orbitals for the model system 2 in Figure 1. At
lowest energy are the two π-type components 1au (π

x) and 1bu
(πy)of Figure 1. They are in-phase combinations of respectively
the dxy and dyz fragment orbitals in a local right-handed
coordinate system where the z-axis is pointing along the Cr−C
bond and the x-axis is perpendicular to the C−Cr−Cr plane,
Figure 1. Higher in energy is 1ag (σ) as a bonding combination
of two mostly dx2−y2 fragment orbitals. At highest energy are 2ag
(δ′) and 1bg (δ). Here 1bg (δ) can unambiguously be
characterized as δ-bonding since it is made up of two dxz
orbitals. On the other hand, 2ag (δ′) is an in-phase combination
of two δ′ fragment orbitals where each δ′ has 49.39% 4s-
character, 25.12% dz2, 13.42% dxy and 10.2% dx2−y2, see left panel
of Figure 1b. With 100% dz2 the 2ag (δ′) component would be
δ-bonding. However, in agreement with ligand field theory dz2
is mostly part of a C−Cr antibonding orbital of higher energy.
Instead δ′ is a metal hybrid dominated by 4s with some
participation from dz2. Thus 2ag (δ′) is better referred to as a
(δ/σ) bonding orbital made up of two in-phase δ′ components
that each are 2-fold symmetric with respect to rotations around
the CCr and CrCr bond without changing sign. The same
shape for 2ag (δ′) can also be seen in previously published
contours of this orbital.1

NOCV-ETS Analysis of the Cr−Cr Bond in Ar*CrCrAr*
and Ar′CrCrAr′. Table 1 (top) affords the ETS analysis of a
Cr−Cr bond formed from two Ar*Cr fragments with a hextet
ground state valence configuration (σ1π1π1δ′1δ1) and opposite
spin polarization (Ar*Cr ↑↑↑↑↑ and ↓↓↓↓↓CrAr*). The two
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fragments are already considered to have the geometry of the
final combined complex. Thus, no attempt is made to
determine the preparation energy ΔEprep of eq 1 as we are
primarily interested in the relative strength of the various Cr−
Cr bonding modes. It follows from Table 1(top) that the total
steric interaction energy ΔEsteric = ΔEelst + ΔEPauli between the
two fragments amounts to 175.52 kcal/mol. It is composed of
the stabilizing electrostatic term ΔEelst of −401.06 kcal/mol and
the Pauli repulsion contribution with a value of 576.58 kcal/
mol. The total Cr−Cr bond formation energy ΔEint = ΔEorb +
ΔEsteric + ΔEdisp is negative (stabilizing) with ΔEint = −91.04
kcal/mol thanks to the orbital interaction energy ΔEorb of
−248.32 kcal/mol and the stabilizing van der Waals dispersion
interactions17 between the two ArCr* fragments given by
ΔEdisp= −18.24 kcal/mol.

Table 2 (top) presents a NOCV decomposition of ΔEorb
according to

Δ = Δ + Δ + Δ + Δ + Δ

+ Δ + Δ + Δ

π π σ δ δ′

′

E E E E E E

E E E
orb orb orb orb orb orb

orb
sec

orb
sec

orb
pol

y x

(11)

Here ΔEorbπy is the contribution from the πy-bond in the

CCrCrC symmetry plane of 2 whereas ΔEorb
πx

is the
corresponding contribution from the πx-bond perpendicular
to the symmetry plane. The πy-bond is seen to be formed by a

flow of α-electron density (Δρorbπy,α) from a dyz orbital on the
right-hand center (yellow) to a dyz orbital on the left-hand side
(Green), (c) of Figure 2. At the same time β-electron density

(Δρorbπy,β) is flowing between dxy electrons in the opposite
direction. For the πx-bond perpendicular to the symmetry plane
the flow of density is between dxz orbitals, (b) of Figure 2. In

absolute terms the πy-bond with ΔEorbπy = −71.84 kcal/mol is

somewhat more stabilizing than the πx-bond with ΔEorbπx =
−49.78 kcal/mol, a point that will be discussed further shortly.
We have further in Figure 2 as (a) the σ-bond formation
involving primarily dx2−y2 orbitals. The σ-link is marginally
weaker than the πx-bond with ΔEorbσ = −45.22 kcal/mol. We
finally have the two δ-type bonds Δρorbδ′ and Δρorbδ in Figure 3.
Here the δ′-bond involving the two δ′ metal hybrids is the
strongest with ΔEorbδ′ −32.10 kcal/mol, Figure 3b. However, the
strength of this bond is visibly aided by some Cr−Cipso
interaction. The other δ-bond Δρorbδ due to the two dxz orbitals
is considerably weaker with ΔEorb

δ = −13.10 kcal/mol, Figure
3a.
There has been considerable interest in the role played by

the Cr−Cipso interaction in stabilizing the bond between the
two Ar*Cr fragments.1,25 We have already noticed some
participation of this interaction in Δρorbδ′ . However, the major
contributions from the Cr−Cipso interaction can be seen in
Figure 4 as Δρorbsec and Δρorbsec′. They represent flow of charge
from the central aryl-rings as well as the metal centers to the
Cr−Cipso bonding region. The combined stabilization amounts
to ΔEorb

sec + ΔEorb
sec′ = −23.06 kcal/mol. We finally have the

remainder Δρorbrest of Δρorb not accounted for so far. It seems also
to represent accumulation of charge in the Cr−Cipso bonding
region. Adding ΔEorb

rest = −15.11 kcal/mol to ΔEorb
sec + ΔEorbsec′

leads to a combined stabilization for the Cr−Cipso bond of
−38.17 kcal/mol. Thus the Cr−Cipso interaction is stronger
than the δ-bond but somewhat weaker than the σ, π, and δ′
bonds.
Turning next to the complete Ar′CrCrAr′ system 1 we find

from Table 1 that ΔEsteric = ΔEelst + ΔEPauli as expected has
increased slightly from 175.52 kcal/mol in 2 to 179.30 kcal/mol

in 1. The five M-M bonding components ΔEorb
πy + ΔEorbπx +

ΔEorb
σ + ΔEorb

δ + ΔEorbδ′ have combined and gone from −212.04
kcal/mol (2) to −212.98 kcal/mol (1) with deviations in the
individual contributions of 2−3 kcal/mol. Thus the Pri

Figure 1. Metal fragment and molecular orbitals with their
corresponding energies for the Cr−Cr bonding orbitals in
Ar*CrCrAr*.

Table 1. ETS Analysisc for Ar*CrCrAr* and Ar′CrCrAr′

compound Eelst ΔEPauli ΔEstericb ΔEorb ΔEdisp ΔEinta

Ar*CrCrAr*d −401.06 576.58 175.52 −248.32 −18.24 −91.04
Ar′CrCrAr′e −421.09 600.40 179.30 −256.26 −39.49 −116.44

aTotal bonding energy: ΔEint = ΔEsteric + ΔEorb + ΔEdisp. bSteric interaction: ΔEsteric = ΔEPauli+ ΔEelstat. cEnergies in kcal/mol. d(Ar* = C6H3-
2,6(C6H5)2).

e(Ar′ = C6H3-2,6(C6H3-2,6-Pr
i
2)2).
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substituents seem hardly to influence the M-M bonding
interactions. The sum of the two secondary interactions ΔEorbsec

ΔEorb
sec′ is also insensitive to adding Pri . On the other hand the

ΔEorb
rest becomes more stabilizing by −6.68 kcal/mol as we

introduce Pri. When ΔEsteric and ΔEorb are combined the two
fragments are 4.16 kcal/mol more strongly bound together in 1
compared to 2. However, the remaining term ΔEdisp due to the
dispersive van der Waals attractions is seen to be much more
stabilizing for the real system 1 where ΔEdisp = −39.49 kcal/
mol than for the model system 2 where ΔEdisp = −18.24 kcal/

mol, Table 1. Thus, introducing the Pri substituents is seen to
stabilize the monomer primarily through ΔEdisp.

Dependence of Dispersion and the Orbital Inter-
action Components on the trans-Bending Angle. We
illustrate in Table 3 the dependence of dispersion ΔEdisp and
the intrinsic bonding components (ΔEelst, ΔEpauli, ΔEorb) on the
trans-bending angle Φ = 180° − ∠CCrCr in Ar*CrCrAr*,
where for ΔEdisp, use is made of the expression and
parametrization by Grimme.23 During the variation of Φ both
the Cr−Cr distance and the structure of Ar* were kept frozen.

Table 2. NOCV Contributionsa,b toa ΔEorb in Ar*CrCrAr* and Ar′CrCrAr′

compound ΔEorb
πy ΔEorbπx ΔEorbσ ΔEorbδ′ ΔEorb

δ ΔEorb
sec ΔEorbsec′ ΔEorbrest ΔEorb

Ar*CrCrAr* −71.84 −49.78 −45.22 −32.10 −13.10 −13.41 −9.65 −15.11 −248.32
Ar′CrCrAr′ −72.73 −49.44 −41.61 −32.61 −16.89 −13.79 −9.23 −21.79 −256.26

aΔEorb = ΔEorbπy + ΔEorbπx + ΔEorbσ + ΔEorbδ + ΔEorbδ′ + ΔEorbsec + ΔEorbsec′ + ΔEorbrest bEnergies in kcal/mol.

Figure 2. Contours of the NOCV deformation densities representing π- and σ-bonding. The contour values are +0.03 au. Green represents positive
and orange negative.

Figure 3. Contours of the NOCV deformation densities representing δ′- and δ-bonding. The contour values are +0.03 au. Green represents positive
and orange negative.
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We recall in addition that the structure of Ar*CrCrAr* has
been obtained from Ar′CrCrAr′ by replacing the Pri groups by
hydrogens.
It follows from Table 3 that both the orbital energy ΔEorb

and the dispersion ΔEdisp term have minima at 70°. However,
the steric interaction energy ΔEsteric has a maximum at 60° and

decreases for larger Φ. As a consequence, the minimum for the
combined interaction energy ΔEint = ΔEsteric + ΔEorb + ΔEdisp is
shifted closer to the observed trans-bending angle of 79° for
Ar′CrCrAr′.
In Table 4 we display the different components of the orbital

interaction energy ΔEorb as a function of Φ. The corresponding
deformation densities are shown in Figures 2−4 for Φ = 79°
and in Supporting Information, Figures S1−S2 for Φ= 0°. We
notice first of all that the secondary interactions Δρorbsec and
Δρorbsec′ are absent as individual NOCV contributions for 0° ≤ Φ
≤ 40°. For Φ > 40° ΔEorb

sec , Δρorbsec′ emerges as individual
stabilizing NOCV components with a minimum for ΔEorbsec +
ΔEorb

sec′ around 79°.
There are two symmetry orbitals contributing to the “δ-

bonding” component ΔEorb
δ , namely, 1bg (Φ) and 2bg (Φ) of

Figure 5a. The term ΔEorb
δ is positive at Φ = 0° where the δ-

bond is represented solely by 2bg (Φ = 90°), Supporting
Information, Figure S2a. It goes through a minimum at Φ = 70°
where 1bg (Φ = 70°) is seen to be δ-bonding. However the π*
combination 2bg (Φ = 70°) has a positive overlap with 1bg (Φ
= 70°) and can thus contribute in a stabilizing fashion to 1bg
(δ) of Figure 1a. At the minimum ΔEorbδ is stabilizing with
ΔEorb

δ −17.49 kcal/mol.
The other δ′-component has contributions from the three

symmetry orbitals (nag (Φ); n = 1,3) of Figure 5. The
corresponding energy ΔEorbδ′ starts out positive at Φ = 0° where
the δ′-component is represented solely by 2ag (Φ = 0°),
Supporting Information, Figure S2b. It decreases throughout
the interval 0° < Φ < 90° and becomes negative at Φ = 40°,
Table 4. The decrease is due to the contribution from the Cr−
Cipso interaction as it can be seen at the equilibrium structure
with Φ = 79° in the plot of the δ′-bonding molecular orbital 1bg
(δ), Figure 1b, as well as the plot of ΔEorbδ′ , Figure 2c. In both
cases the dominating symmetry orbital is 3ag (Φ). In the
interval 0° ≤ Φ ≤ 40° where both ΔEorbδ′ and ΔEorb

δ are positive
the system would prefer a (δ′)1(δ)1(δ′*)1(δ*)1 high-spin
configuration rather than the low spin (δ′)2(δ)2 configuration.
The σ-bond has as the δ′-component contributions from the

three symmetry orbitals (nag (Φ); n = 1,3). At Φ = 0° ΔEorbσ is
represented by 3ag (Φ = 0°), Supporting Information, Figure
S1a and Figure 5e. Here 3ag (Φ = 0°) is an in-phase linear
combination of the two δ′ fragment orbitals, Figure 1b. As Φ
increases 1ag (Φ) and 2ag (Φ) becomes dominant and ΔEorb

σ

reaches a minimum at Φ = 50° with ΔEorbσ = −57.61 kcal/mol
where 1ag (Φ) has reached its maximal bonding overlap
whereas that of 2ag (Φ) still is growing. At the equilibrium
structure ΔEorb

σ is dominated by 2ag (Φ = 79°) with some
contribution from 1ag (Φ = 79°), Figures 2a, and ΔEorbσ has
risen to −45.22 kcal/mol.

Figure 4. Contours of the NOCV deformation densities for the Cr−
Cipso secondary interactions and the remainder with the corresponding
orbital interaction energies. The contour values are 0.03 a.u for
secondary interactions and 0.003 a.u for the remainder . Green
represents positive and orange negative.

Table 3. ETS Analysisc,d for Ar*CrCrAr* Using BP86 at
Different Cr−Cr−C Angles

Φe ΔEelst ΔEPauli ΔEsteric
b ΔEorb ΔEdisp ΔEint

a

0 −13.71 124.03 110.32 −118.42 −7.80 −15.90
35 −117.81 245.03 127.23 −127.69 −16.48 −16.95
40 −142.28 270.81 128.53 −132.31 −17.57 −21.34
50 −312.41 501.27 188.87 −236.64 −18.83 −66.60
60 −382.16 579.01 196.85 −259.48 −19.44 −82.07
70 −415.58 609.63 194.05 −265.42 −19.55 −90.93
79 −401.06 576.58 175.52 −248.32 −18.24 −91.04
90 −386.68 556.62 169.94 −237.42 −19.35 −86.83

aTotal bonding energy: ΔEint = ΔEsteric + ΔEorb + ΔEdisp. bSteric
interaction: ΔEsteric = ΔEPauli + ΔEelstat.

cEnergies in kcal/mol. d(Ar* =
C6H3-2,6(C6H5)2).

eTrans bending angle Φ = 180° − ∠CCrCr in
degrees.

Table 4. NOCV Contributionsa,b to ΔEorb
a in Ar*CrCrAr* Using BP86 at Different Angles

Cr−Cr−C ΔEorb
πy ΔEorbπx ΔEorbσ ΔEorb

δ ΔEorb
δ′ ΔEorbsec ΔEorbsec′ ΔEorb

rest ΔEorb
0 −50.02 −44.49 −35.41 12.28 11.88 −9.45 −118.42
35 −44.70 −41.16 −26.13 2.86 9.78 −7.76 −127.69
40 −43.65 −42.09 −39.65 3.63 −0.69 −9.22 −132.31
50 −60.83 −53.47 −57.69 −9.00 −18.18 −13.10 −10.79 −14.52 −236.64
60 −72.69 −53.39 −55.57 −15.10 −23.42 −14.01 −11.05 −15.93 −259.48
70 −78.88 −52.36 −47.18 −17.49 −30.25 −14.66 −11.99 −14.71 −265.42
79 −71.84 −49.78 −45.22 −13.10 −32.10 −13.41 −9.65 −15.11 −248.32
90 −67.31 −48.90 −38.33 −8.00 −36.14 −15.30 −9.91 −15.44 −237.42

aΔEorb = ΔEorbπy + ΔEorbπx + ΔEorbσ + ΔEorbδ + ΔEorbδ′ + ΔEorbsec + ΔEorbsec′ + ΔEorbrest. bEnergies in kcal/mol.
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It follows from Table 4 that the πy-bond in the CCrCrC

plane has the most stabilizing orbital contribution ΔEorb
πy . At Φ

= 0° it starts out as a regular π-bond described solely by 1bu (Φ
= 0°), see Supporting Information, Figure S1b and Figure 5d.

As Φ increases ΔEorbπy reaches a minimum at Φ = 70° with ΔEorbπy

= −78.88 kcal/mol. At the nearby equilibrium structure with Φ
= 79°we find ΔEorbπy = −71.84 kcal/mol. In both cases the bond
is described by the π-orbital 1bu (Φ) augmented by the σ*-
orbital 2bu (Φ) through the large overlap between the two
symmetry combinations, Figures 1d and 2c.
We finally have the out-of-plane πx-bond that has a rather

steady ΔEorb
πy which is maintained throughout the Φ range by

1au (Φ) and 2au (Φ), Figure 5b. At Φ = 0° the symmetry

orbital 1au (Φ = 0°) makes up the πx-bond and ΔEorb
πy = −44.49

kcal/mol, Supporting Information, Figure S1c. The term ΔEorbπx

has a shallow minimum at Φ = 50° with ΔEorbπx = −53.47 kcal/

mol and attain a value of ΔEorbπx = −49.78 kcal/mol at the
equilibrium structure where the πx-bonding mostly is due to 2au
(Φ = 79°), Figures 1e and 2b . A more general discussion of
quintuple bonds have been given elsewhere.1−8,21−24

IV. CONCLUDING REMARKS
We have applied the NOCV-ETS decomposition scheme to a
study of the putative Cr−Cr quintuple bond in Ar′CrCrAr′ (Ar′
= C6H3-2,6(C6H3-2,6-Pr

i
2)2) 1. This complex has a trans-bent

structure with a Cr−Cr−C angle of 101° and a short Cr−Cr

bond length of 1.835 Å. It follows from the NOCV-ETS
analysis that the trans bending is favorable since it leads to a
stabilization of the σ, π, and δ bonding component. Our ETS-
NOCV calculations indicate that the two δ-components are
weak in the linear conformation where the Cr−Cr−C angle is
180°. In that case 1 would adopt a (δ′)1(δ)1(δ′*)1(δ*)1 high-
spin configuration rather than a low spin (δ′)2(δ)2 config-
uration. Thus, the linear geometry 1 only retains a triple bond,
Table 4. However in the trans bent geometry both δ-
components are stabilized adopting a low spin (δ′)2(δ)2

configuration. Thus, trans bent 1 clearly can be characterized
as having a quintuple bond, Table 4. The trans bent structure is
further favored by a Cr−Cipso interaction that contributes with
ΔEorb

δ′ + ΔEorbδ = −23 kcal/mol to its stability relative to the
linear conformation.
We have also been able to address the role of the Pri-

substituents in 1 by comparing to calculations on the model
system Ar*CrCrAr* (Ar* = C6H3-2,6(C6H5)2) 2 where the Pri

groups have been replaced by hydrogens. Our NOCV-ETS
analysis indicates that the electron donating abilities of the Pri

groups only have a marginal influence on the quintuple bond.
On the other hand, the Pri-substituents add considerably extra
stability (20 kcal/mol) to the Ar′CrCrAr′ dimer compared to
the two Ar′Cr monomers by adding stabilizing dispersive van
der Waals attractions between the two Ar′ ligands. The addition
of even more isopropyl substituents to Ar has been observed
experimentally25 eventually to destabilize CrAr compared to
ArCrCrAr as any net gain from further dispersion stabilization
is balanced out by increasing steric destabilization. We have
finally shown that the optimal trans bending angle differs
among the various σ, π, and δ bonding component. This is the
first study that is able to quantify the different bonding
contributions and delineate their relative importance as a
function of the trans bending angle.
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